If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-100=84
We move all terms to the left:
k^2-100-(84)=0
We add all the numbers together, and all the variables
k^2-184=0
a = 1; b = 0; c = -184;
Δ = b2-4ac
Δ = 02-4·1·(-184)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{46}}{2*1}=\frac{0-4\sqrt{46}}{2} =-\frac{4\sqrt{46}}{2} =-2\sqrt{46} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{46}}{2*1}=\frac{0+4\sqrt{46}}{2} =\frac{4\sqrt{46}}{2} =2\sqrt{46} $
| 1x÷3=136 | | -3(2a-5/6)=(-1.25+3)/0.5 | | 14x-4x=26 | | m-37=53 | | 5x^2+31=156 | | 6x+15=65+4x | | -2x2+4x-2=0 | | -3+9m=-129 | | 40=-5r-10 | | (2.3x+25)+(5.8x+11)=180 | | -10+-5r=40 | | g/6=18 | | -9+24=-2x | | −3=x+6−3 | | 4x+2(x−6)=8x+2 | | 2.3x+25=180 | | 24w=360 | | -22/5=-16/5+7/10g | | 4+9x=6x+16 | | 8x-4=44-8x | | 4x+11÷3=5× | | -2(-3+x=-4 | | -5(2x+3)-5=2x+10+4x | | 3y^+5y^+10y^-4y=0 | | –918=–18(n−898) | | y´´´´´+5y´´´´−2y´´´−10y+y´+5y=0 | | 4s−17=34s−17=34s−17=34s−17=34s−17=34s−17=34s−17=3 | | x^{2}-5=44 | | -3(2x+8)-6=30 | | h/7−2=2 | | g/6+13=28 | | -9(-4x-10)=1 |